Statecharts: A visual formalism for complex systems

David Harel

Presented by: Taha Rafiq

CS846: Model-Based Software Engineering
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Motivation
Motivation

• The author was a consultant for IAI
• Involved with design specification of fighter aircraft – the Lavi
• Interactions with the avionics team
• What happens when you press a button under a certain set of circumstances?
 – Incomplete/Inconsistent/Incomprehensible specification – who decides?
Motivation

“How should an engineering team specify the behavior of such a complex reactive system in an intuitively clear yet mathematically rigorous fashion? This was what I aimed to try to answer.”

- David Harel, Statecharts in the making: A personal account
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
What is a Reactive System?

• Main behavior – Reactivity
• Event-driven, control-driven, event-response nature
• Often highly parallel behavior
• Behavior is specified by set of allowed
 – Input/Output events
 – Conditions
 – Actions
 – Timing constraints
Specifying the Behavior of a Reactive System

• States & Events – natural medium

• General form
 – When event \(a \) occurs in state \(A \), if condition \(C \) is true, the system transfers to state \(B \)

• **Finite State Machines** = formal mechanism for describing such interactions
Problems with FSMs

• Complex system (fighter aircraft)
 – Unmanageable, exponentially growing states
 – Flat, unstructured and chaotic diagram
What are Statecharts?

• Extension of traditional state diagrams
• Visual formalism for states and transitions
 – Modular
 – Clustering
 – Concurrency
 – Levels of abstraction

• Statecharts = state-diagrams + depth + orthogonality + broadcast-medium
What are Statecharts?
Citizen Quartz Multi-Alarm III Wristwatch

- 4 buttons: a, b, c, d
- Time + date
- Chime (hour beep)
- 2 alarms
- Stopwatch
- Light
- Weak battery indication
- Beeper test
Running Example

Main Events

- Depressing of button (a)
- Releasing of button (â)
- Internal events
 - Timed events
 - Battery events
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

- Encapsulation expresses hierarchy
- Arrows originate and terminate at any level
- Clustering represents XOR (Abstraction)
 - D is XOR of A and C
Zooming In and Zooming Out

Refinement

Zooming out of D

Abstraction

Zooming into D
Default States

(i) Advantageous for zooming
Watch Example

\[P_1 = \text{alarm1.on} \land (\text{alarm2.off} \lor T_1 \neq T_2) \]

\[P = \text{alarm1.on} \land \text{alarm2.on} \land T_1 = T_2 \]

P = alarm1.on && alarm2.on && T1 == T2
Refinement of Displays State

diagrams

- time
- date
- stopwatch
- chime
- alarm 2
- alarm 1

2 min in date

a

UNIVERSITY OF WATERLOO
History Connective

Enter *off* first time, else enter last visited state
History Connective - Levels

Apply only at level K

Apply at all contained levels
History Connective - Levels

Something between 'one' and 'all' extremes
Watch Example – History + Update Capability
Watch Example – Refinement of Update States

Depressing d brings back to previous substate

c applies to certain parts of update

Fig. 15.
Common Source/Target Arrows

Contradiction: Non-deterministic behavior
Subtle Contradictions - Example
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

• \textit{AND} decomposition
• System must be in \textbf{all} of its \textit{AND} components
• \textit{Y} is an orthogonal product of \textit{A} and \textit{D}
AND-Free Equivalence

Much cleaner and easier to understand!
Example Application – Avionics System

AVIONICS SYSTEM

general-mode

- cruise
- touchdown
- take off
- on-ground

navigate

- switch on/off
- standby
- end warmup
- on

radar

- switch on

abc-system

- lever on/off
- calibrate
- end calibration
- on

subsystems
Orthogonal States - Exits and Entrances

Alternative representations
Orthogonality – Watch Example
Orthogonality – Watch Example
Adding a Feature – Watch Example

Draw box around relevant portions
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Basics

• Expressing reactivity
 – Generating events
 – Changing conditions

• **Action**: Split second occurrence
 – Display balance

• **Activity**: Take non-zero time
 – Beep for 30 seconds

• Each activity X associated with two actions: $\text{start}(X)$ and $\text{stop}(X)$
Basics

• Actions are allowed with
 – Transitions
 – Entering a state
 – Exiting a state
• Difficult to define semantics
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Condition and Selection Entrances

(a) \(\alpha(Q) \xrightarrow{} \alpha(P) \)

(b) \(\alpha(Q) \xrightarrow{} \alpha(P) \)

(c) \(\alpha \)

Diagram (a) shows a process labeled \(\alpha(Q) \) leading to \(\alpha(P) \). Diagram (b) also includes a process labeled \(\alpha(Q) \) leading to \(\alpha(P) \) and a process labeled \(\alpha \). Diagram (c) highlights a selection process.
Timeouts
Unclustering
Parametrized States
Overlapping States
Temporal Logic

• Specifying constraints in TL and verification of statecharts from constraint specification

OR

• Synthesizing 'good' statecharts from TL specifications
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Some Problems

Cycles

What happens when α occurs?
Outline

• Motivation behind Statecharts
• What are Statecharts?
• Diving deeper
 – Clustering & Refinement
 – Orthogonality & Concurrency
 – Actions & Activities
• Additional features & possible extensions
• Trouble with semantics
• Discussion
Discussion

• Impact
 – 6000+ citations
 – UML statecharts are a variant of the Harel statechart

• Problems
 – Easy to make errors that lead to undefined/contradictory states
 – Unintended consequences in complex systems